
1. Introduction
Electrospinning is a fiber-forming process by which
either polymer solutions or melts are charged by
high voltage to form fine jets. It was first reported
by Formhals in 1934 [1]. Fiber formation by elec-
trospinning of polymer solutions has been exten-
sively studied in terms of voltage, tip-to-collector
distance, feeding rate of polymer solution, and
polymer solution properties [2–5]. These nanofibers
can form nonwoven textile mats, oriented fibrous
bundles and even three-dimensional structured scaf-
folds, all with large surface areas and high porosity
[6]. These nanofibers are of considerable interest
for various kinds of applications.
Chitosan, a (1–4)-linked 2-amino-2-deoxy-D-glu-
copyranose (Figure 1), is derived from chitin, one
of the most abundant natural polysaccharides. Chi-
tosan is well known for its nontoxic, biocompatible
and biodegradable properties [7]. In addition, it has
several unique properties: it is antimicrobial and

inhibits the growth of a wide variety of fungi,
yeasts, and bacteria, which can be beneficial for use
in the field of biomedicine [8]. It can also bind toxic
metal ions, which can be beneficial for use in air
cleaning and water purification applications [9].
These properties arise as a result of protonation of
NH2

– groups on the chitosan backbone.
Recently, electrospun nanofibers based on chitosan
have been widely researched and various nanofiber
products containing chitosan have been produced
by electrospinning. These nanofibers yield potential
applications in various areas. This article reviews
the preparations and properties of the nanofibers by
electrospinning of pure chitosan, blends of chitosan
and synthetic polymers, blends of chitosan and pro-
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Figure 1. The molecular structure of chitosan



tein, chitosan derivatives, as well as blends of chi-
tosan and inorganic nanoparticles, respectively. The
applications of the chitosan based nanofibers in
areas such as enzyme immobilization, filtration,
wound dressing, tissue engineering, drug delivery
and catalysis are also summarized in detail.

2. Electrospinning of chitosan
2.1. Electrospinning of pure chitosan
Chitosan is soluble in most acids. The protonation
of chitosan changes it into a polyelectrolyte in
acidic solutions. The repulsive forces between ionic
groups within polymer backbone that arise due to
the application of a high electric field during elec-
trospinning restrict the formation of continuous
fibers and often produce beads [10], so it is difficult
to fabricate pure chitosan nanofibers. An electro-
spun nanofibrous mat of pure chitosan was success-
fully prepared by Ohkawa and coworkers [11] using
trifluoroacetic acid (TFA) as electrospinning sol-
vent. TFA is a suitable spinning solvent for chitosan
because the amino groups of the chitosan can form
salts with TFA [12], which can effectively destroy
the intermolecular interactions between the chi-
tosan molecules and thus facilitate electrospinning.
As the chitosan concentration increases, the mor-
phology of the deposition on the collector changes
from spherical beads to interconnected fibrous net-
works. The addition of dichloromethane (DCM) to
the chitosan-TFA solution improves the homogene-
ity of the electrospun chitosan fibers without inter-
connected fibrous networks. Under optimized con-
ditions, homogenous chitosan fibers with a mean
diameter of 330 nm were prepared. Another study
conducted by Ohkawa et al. [13] focused on opti-
mizing the viscosity of chitosan solutions in order
to decrease the average fiber diameter. It was deter-
mined that fiber diameter and polymer concentra-
tion have an inverse relationship. Sangsanoh et al.
[14] developed electrospun chitosan nanofibers
using TFA/DCM (70:30 v/v) as electrospinning sol-
vent. The obtained fibers with average diameters of
126±20 nm were smooth without the presence of
beads.
Dissolution of chitosan nanofibers by electrospin-
ning of chitosan solution in TFA with or without
DCM as the modifying cosolvent will result in the
loss of the fibrous structure as soon as the mem-
branes contact with neutral or weak basic aqueous

solutions, and thus limits the further use of the
membranes [15]. Dissolution occurs as a result of
the high solubility in these aqueous media of
!NH3

+CF3COO– salt residues that are formed
when chitosan is dissolved in TFA. Traditional neu-
tralization with a NaOH aqueous solution only
maintained partial fibrous structure. Much improve-
ment in the neutralization method was achieved
with the saturated Na2CO3 aqueous solution with an
excess amount of Na2CO3(s) in the solution. The
electrospun chitosan nanofibrous membranes, after
neutralization in the Na2CO3 aqueous solution,
could maintain its fibrous structure even after con-
tinuous submersion in phosphate buffer saline (pH =
7.4) or distilled water for 12 weeks. Haider and
Park [16] prepared similar chitosan nanofiber mats
by electrospinning. The as-spun nanofiber (~235 nm
in diameter) mats which were neutralized with
potassium carbonate showed good erosion stability
in water and high adsorption affinity for metal ions
in an aqueous solution.
Besides TFA, the second solvent that has shown to
effectively produce chitosan nanofibers is concen-
trated acetic acid. A uniform nanofibrous mat with
average fiber diameter of 130 nm was fabricated by
Geng et al. [17] from the following optimum condi-
tion: 7% chitosan solution in aqueous 90% acetic
acid solution and in the electric field of 4 kV/cm.
The aqueous acetic acid concentration higher than
30% was a prerequisite for chitosan nanofiber for-
mation, because more concentrated acetic acid in
water progressively decreased the surface tension
of the chitosan solution and concomitantly increased
the charged density of jet without a significant
effect on the solution viscosity. However, acetic
acid solution of more than 90% did not dissolve
enough chitosan to make a spinnable viscous con-
centration. Additionally, only chitosan of a molecu-
lar weight of 106 000 g/mol produced bead-free
chitosan nanofibers, while low or high molecular
weight chitosans of 30 000 and 398 000 g/mol did
not. Average fiber diameters and size distribution
decreased with increasing electric field and more
bead defects appeared at 5 kV/cm or more. In addi-
tion, Vrieze et al. [18] attempted a range of acid
aqueous solutions such as formic acid, acetic acid,
lactic acid and hydrochloric acid for developing
chitosan nanofibres by electrospinning. The study
showed that chitosan nanofibres with a diameter of
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about 70±45 nm were obtained from a concentrated
acetic acid solution (90%) with a 3% chitosan con-
centration at an applied voltage of 2.0 kV/cm and a
flow rate of 0.3 ml/h.
The problem of the high viscosity of chitosan,
which limits its spinnability, is resolved through the
application of an alkali treatment which hydrolyzes
chitosan chains and so decreases their molecular
weight [19]. Solutions of the treated chitosan in
aqueous 70–90% acetic acid produce nanofibers
with appropriate quality and processing stability.
Decreasing the acetic acid concentration in the sol-
vent increases the mean diameter of the nanofibers.
Optimum nanofibers are achieved with chitosan
which is hydrolyzed for 48 h. Such nanofibers result
in a moisture regain which is 74% greater than that
of treated and untreated chitosan powder. The diam-
eter of this nanofiber, 140 nm, is strongly affected
by the electrospinning conditions as well as by the
concentration of the solvent. FTIR investigations
prove that neither the alkali treatment nor the elec-
trospinning process change the chemical nature of
the polymer.
Pure chitosan nanofibers can be cross-linked using
a method involving glutaraldehyde (GA) vapor, uti-
lizing a Schiff base imine functionality. The study
conducted by Schiffman et al. [20] indicated that
the solubility of the chitosan mats was greatly
improved after cross-linking. The as-spun medium
molecular weight chitosan nanofibers have a
Young’s modulus of 154.9±40.0 MPa, and were
highly soluble in acidic and aqueous solutions.
After cross-linking, the fibers increased in diameter
by an average of 161 nm, have a decreased Young's
modulus of 150.8±43.6 MPa, and were insoluble in
basic, acidic, and aqueous solutions. Though the
extent to which GA penetrates into the chitosan
fibers is currently unknown, it is evident that the
cross-linking resulted in increased brittleness, a
color change, and the restriction of fiber sliding.
Schiff base cross-linked chitosan fibrous mats can
be produced utilizing a one-step electrospinning
process [21], which is 25 times faster and, there-
fore, more economical than the two-step vapor-
cross-linking method mentioned above. These
fibrous mats are insoluble in acidic, basic, and aque-
ous solutions for 72 h. Additionally, this improved
production method results in a decreased average
fiber diameter, which measures 128±40 nm.

2.2. Electrospinning of blends of chitosan and
synthetic polymers

It is commonly observed when electrospinning
from polymers that the formation of beads attrib-
uted to an inadequate stretch of the filaments during
the whipping of the jet because of a low charge den-
sity. To overcome this defect, salts [22], ionic sur-
factants [23] or ionic polyelectrolytes [24] can be
added into the polymer solution to improve the net
charge density that enhances the whipping instabil-
ity. The jet was stretched under stronger charge
repulsion and at a higher speed, resulting in an
exhaustion of the bead structure. Since chitosan is a
linear cationic polymer, it was determined that chi-
tosan can act like other ionic additives and reduce
fiber diameter and thus producing bead free fibers
[25]. Recently, the electrospun composite nano -
fibers have been developed using chitosan and syn-
thetic polymers such as poly(vinyl alcohol) (PVA),
poly(ethylene oxide) (PEO), poly(ethylene terptha-
late) (PET), polycaprolactone (PCL), poly(lactic
acid) (PLA), nylon-6 and others. These composite
nanofibers are more advantageous over the electro-
spun nanofibers of pure chitosan, because the
mechanical, biocompatible, antibacterial and other
properties of the nanofibers were drastically enhanced
by the addition of these polymers.
Because of its favorable properties such as nontoxi-
city, biocompatibility and biodegradability, PVA
has been used for a variety of biomedical applica-
tions such as bone implants as a replacement for the
nucleus pulposus [26] and artificial organs [27].
Because PVA has good fiber forming characteris-
tics, many nanofibers of the blends of PVA and chi-
tosan have been fabricated by electrospinning [28–
33]. For examples, Nanofibers with average diame-
ters between 20 and 100 nm have been prepared by
electrospinning of 82.5% deacetylated chitosan
(Mv = 1600 kDa) mixed with poly(vinyl alcohol)
(PVA, Mw = 124–186 kDa) in 2% (v/v) aqueous
acetic acid [28]. Finer fibers, fewer beaded struc-
tures and more efficient fiber formation were
observed with increasing PVA contents. Chitosan/
PVA nanofibers were also prepared via the electro-
spinning of chitosan/PVA/acrylic acid aqueous solu-
tions at various concentrations by adjusting the con-
centrations of chitosan, PVA and acrylic acid [29].
The nanoporous fibers of pure chitosan could be
generated by removing the PVA component in the
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chitosan/PVA bicomponent fibers with NaOH aque-
ous solution [28, 30]. These pure chitosan nano -
fibers have special characteristics of excellent bio-
compatibility, high surface/volume ratio, and large
porosity. Chitosan/PVA nanofibers can be crosslinked
with heat mediated chemical crosslinking [34]. Tri-
ethylene glycol dimethacrylate (TEGDMA ) was
added into chitosan/PVA solution prior to spinning
followed by heat-treating the as-spun mats for 2 h at
80°C. The results showed that, the nanofibers exhib-
ited a smooth surface and regular morphology, and
tensile strength of nanofibers improved with increas-
ing of TEGDMA content.
Poly(ethylene oxide) (PEO) is also a biocompatible
polymer that has been used as cartilage tissue repair
[35] and wound dressing [36]. Many nanofibers of
the blends of PEO and chitosan have also been fab-
ricated by electrospinning [37–42]. For examples,
Klossner et al. [37] fabricated defect-free nanofibers
with average diameters ranging from 62±9 to
129±16 nm by electrospinning of blended solutions
of chitosan and PEO in acetic acid. Their study
showed that as total polymer concentration (chi-
tosan + PEO) increased, the number of beads
decreased, and as chitosan concentration increased,
fiber diameter decreased. Chitosan/PEO solutions
phase would separate over time, so blended solu-
tions were able to be electrospun easily within 24 h
of initially being blended. The addition of NaCl sta-
bilized these solutions and increased the time the
blended solutions could be stored before electro-
spinning. Bhattarai et al. [38] prepared nanofibers
with an average fiber diameter controllable from a
few microns down to ~40 nm and a narrow size dis-
tribution by electrospinning solutions containing
chitosan, PEO and Triton X-100™. It was found
that the matrix with a chitosan/PEO ratio of 90/10
retained excellent integrity of the fibrous structure
in water. Hybrids of chitosan/PEO could be electro-
spun in the presence of micellar surfactant solutions
[39, 40]. The presence of surfactants resulted in the
formation of needle-like, smooth or beaded fibers.
It was revealed that nanofibers consisted of both
polymers and surfactants with concentration of the
constituents differing from that in polymer solu-
tions. Results suggest that surfactants may modu-
late polymer–polymer interactions thus influencing
the morphology and composition of deposited
nanostructures. Introduction of an ultrahigh-molec-

ular-weight poly(ethylene oxide) (UHMWPEO)
into aqueous chitosan solutions remarkably enhances
the formation of chitosan nanofibrous structure and
leads to much lower loading of the water soluble
fiber [43]. It can be made into both extremely thin
nanofibers (less than 100 nm in diameters) and
large microfibers (few tens of micrometers in diam-
eters). The excellent electrospinnability of the cur-
rent formulation renders electrospinning of natural
biopolymer chitosan a robust process for large-
scale production of practically applicable nanofi-
brous structures.
Polyethylene terephthalate (PET) is a highly crys-
talline polymer with excellent physical,  mechani-
cal and antibacterial properties [44], and is often
used in the textile and plastic industry. The polymer
blends of PET and chitosan could be electrospun
onto the PET micro-nonwoven mats for biomedical
applications [45]. The PET/chitosan nanofibers were
evenly deposited on to the surface, and the diameter
of the nanofibers was in the range between 500 and
800 nm. The wettability and antibacterial activity of
the PET nanofibers was significantly enhanced by
the incorporation of chitosan. Lopes-da-Silva et al.
[46] also reported the preparation and characteriza-
tion of nanofibrous mats electrospun from mixed
solutions of PET and chitosan. Their results indi-
cated that the presence of chitosan increased the
diameter and the size distribution of the fibers. Chi-
tosan molecular weight and concentration affected
the mechanical properties of the nanofibrous mats.
Phase separation during solvent evaporation and
fiber formation, taking place at varied extent depend-
ing on molecular mobility of one of the compo-
nents, is suggested to explain the formation of hybrid
continuous or core-sheath fibers.
Polycaprolactone (PCL) is a semi-crystalline poly-
mer with good flexibility, it can be used as surgical
sutures, fracture fixation materials and drug carrier.
PCL nanofibers containing various amounts of chi-
tosan (0, 3, 9, and 23%) were prepared [47]. Char-
acterization of the obtained nanofibers revealed that
average fiber diameter, hydrophilicity, Young’s mod-
ulus, and fiber degradation were all closely corre-
lated with the amount of chitosan in PCL nano -
fibers. The nanofibers are superior to PCL nano -
fibers in promoting bone tissue formation. Another
fibrous scaffold comprising of chitosan and PCL
was electrospun in a novel solvent consisting of
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formic acid and acetone [48]. This study indicated
that optimized combination of chitosan (1%) and
PCL (8%) was in 1:3 compositions. Mohammadi et
al. [49] also developed 3D PCL nanofibrous scaf-
folds containing chitosan and PVA for bone tissue
engineering via a multi-jet electrospinning method.
Poly(lactic acid)(PLA) is a thermoplastic polymer
made from lactic acid and has mainly been used for
biodegradable products, such as plastic bags and
planting cups [50]. The chitosan/PLA blend micro/
nanofibers have been prepared by electrospinning
in TFA [51]. It was found that the average diameter
of the chitosan/PLA blend fibers became larger, and
the morphology of the fibers became finer with the
content of PLA increasing. Fourier transform infrared
spectroscopy (FTIR) indicated that there are molec-
ular interactions between chitosan and PLA. Chen
et al. [52] prepared Chitosan/poly(L-lactic acid-co-
!-caprolactone) (P(LLA-CL)) blend nano fibers by
electrospining using 1,1,1,3,3,3-hexafluoro-2-
propanol (HFIP) and TFA as solvents. The average
fiber diameter increased with increasing polymer
concentration and decreasing the blend ratio of chi-
tosan to P(LLA-CL). The porosity of chitosan/
P(LLA-CL) nanofiber mats increased with increas-
ing the weight ratio of chitosan to P(LLA-CL),
while both the tensile strength and the ultimate
strain increased with increasing P(LLA-CL) ratio.
Nylon-6 (polyamide-6) has good mechanical prop-
erties and thermal stability, and has earlier been
used as engineering plastics. Nylon-6 nonwoven
mats have been produced from solutions with
formic acid (FA) by electrospinning [53]. Compos-
ite membranes of nylon-6/chitosan nanofibers with
different weight ratio of nylon-6 to chitosan were
fabricated by electrospinning [54]. The morphology
and diameter of the nanofibers were influenced by
the concentration of the solution and weight ratio of
the blending component materials. This study indi-
cated that intermolecular interactions occurred
between nylon-6 and chitosan and the intermolecu-
lar interactions varied with varying chitosan content
in the fibers. It was concluded that a new composite
product was created and the stability of this system
was attributed to strong new interactions such as
hydrogen bond formation between the nylon-6 poly-
mers and chitosan structures.
Synthetic polymers which can improve the spinnabil-
ity of chitosan have a same property  that the poly-

mers can interfere with the rigid association of the
chitosan molecules, and thus lead to less free amino
groups on the chitosan backbone. The addition of
the polymers can relieve the protonation of chitosan
restricting the formation of continuous fibers. More-
over, the polymers can be conveniently electrospun
to nanofibers. Except for synthetic polymers, agarose,
a natural polymer which has special gelling proper-
ties resulting in various applications [55], could
improve the spinnability of chitosan with TFA/
DCM mixture as electrospinning solvent [56]. It
was found that smooth, continuous fibers were gen-
erated at an agarose content of less than 50%. The
FTIR analysis revealed a gradual shift of the
absorption band in the blend fibers, suggesting the
strong interaction and good compatibility between
chitosan and agarose.

2.3. Electrospinning of blends of chitosan and
proteins

The proteins which can be mixed with chitosan to
form electrospun nanofibers have similar character-
istics with the polymers mentioned above: they can
be conveniently electrospun to nanofibers and can
interfere with the association of the chitosan mole-
cules. Pure electrospun collagen nanofibers have
been fabricated in HFIP [57]. The nanofibrous matrix
is a good candidate for biomedical applications,
such as wound dressing and scaffolds for tissue
engineering. To develop better biomimetic wound
dressing and extracellular matrix for the tissue engi-
neering, electrospun collagen/chitosan nanofibrous
mats were developed by electrospinning using
HFIP/TFA (the volume ratio of 90/10) as solvent
[58]. It was found that the diameter of the spun
fibers became thick with the concentration of the
solution increasing and became fine with the ratio
of the chitosan/collagen increasing. The intermole-
cular interactions in electrospun collagen/chitosan
complex fibers were also studied by Chen et al.
[59]. Their study showed that intermolecular inter-
actions existed and varied with various chitosan
contents in the fibers. These interactions make col-
lagen and chitosan miscible at the molecular level.
The mechanical properties of electrospun colla-
gen/chitosan single fibers and fibrous membrane
investigated with a nano tensile testing system and
a universal materials tester, respectively, were
dependent on fiber diameter and the ratio of colla-
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gen to chitosan in fibers [60]. The collagen/chitosan
nanofibers can be further crosslinked by glutaralde-
hyde (GA) vapor [61]. After crosslinking, the colla-
gen/chitosan nanofibers do not change significantly,
except for enhanced stability, neither collagen nor
chitosan molecular chains could be crystallized in
the course of electrospinning and crosslinking, and
yielding an amorphous structure in the nanofibers.
Blends of type I collagen, chitosan and PEO can be
electrospun into nanofibers, which could be further
crosslinked by glutaraldehyde (GA) vapor [62]. The
nanofiber diameter was found to be 134±42 nm,
which increased to 398±76 nm after crosslinking.
The Young's modulus increased after crosslinking,
however, the ultimate tensile strength, tensile strain,
and water sorption capability decreased after
crosslinking.
Silk fibroin (SF) is the fibrous protein that forms
silkworm silk. In recent years, SF has been increas-
ingly studied for new biomedical applications due
to its biocompatibility, slow degradability, remark-
able mechanical properties, low inflammatory
responses, and good oxygen and water vapor per-
meability of the material [63, 64]. In addition, it
was found that SF had a good anti-thrombogenicity
and absorbability even though the polymer showed
foreign body reaction [65]. Pure SF nanofibers can
be made by electrospinning of SF in formic acid
[66]. Similarly, SF/chitosan nanofibers can be made
by electrospinning of SF/chitosan blends containing
up to the chitosan content of 30% in formic acid
[67]. The as-spun SF/chitosan blend nanofibers
showed smaller diameter and narrower diameter
distribution than pure SF nanofibers, and the diam-
eter gradually decreased from 450 to 130 nm with
the addition of chitosan in blends. Comparing with
the pure SF nanofibers, the conformational change
of the as-spun SF/chitosan blend nanofibers into "-
sheet was faster because the chitosan with rigid
backbone might synergistically promote the confor-
mational transition of SF by an intermolecular
interaction.
Zein is a ‘yellowish’ colored maize storage pro-
lamine that induced great interest in a number of
industrial applications such as food, food coating
and food packaging, and can be easily electrospun
into nanofibers [68]. Blends of zein and chitosan
(up 10 wt.%) can be electrospun to yield water
insoluble fiber mats with efficient biocide proper-

ties [69]. The study indicated that both components
are not miscible, the presence of the chitosan phase
leads to slightly enhanced glass transition tempera-
ture for the zein phase. Zein/chitosan/Poly(vinyl
pyrrolidone) (PVP) composite fibrous membranes
were also fabricated from aqueous ethanol solutions
by electrospinning [70]. PVP was introduced to
facilitate the electrospinning process. Increasing
zein and PVP concentrations led to an increase in
average diameters of the fibers. In order to improve
stability in wet stage and mechanical properties, the
composite fibrous membranes could be crosslinked
by hexamethylene diisocyanate (HDI). The
crosslinked membranes showed slight morphologi-
cal change after immersion in water for 24 h. The
tensile strength and elongation at break of the mem-
branes were increased after crosslinking, whereas
Young’s modulus was decreased.

2.4. Electrospinning of chitosan derivatives
The spinnabilities are greatly improved by chang-
ing chitosan to its derivatives, because most of chi-
tosan derivatives are soluble in water and (or) in a
wide variety of common organic solvents. O-car-
boxymethyl chitosan (O-CMCS) is a water-soluble
derivative of chitosan. It has good moisture reten-
tion, biocompatibility and antibacterial property, so
it is a good biomaterial [71]. Du and Hsieh [72]
synthesized O-CMCS with varying molecular
weights and degrees of substitution by alkalization
of chitosan, followed by carboxymethylation with
monochloroacetic acid, and fabricated various
O-CMCS/water-soluble polymer blend nanofibers
by electrospinning. The optimal fiber formation
was observed at equal mass composition of O-CMCS
(89 kDa at 0.36 DS) and PVA, producing nano -
fibers with an average diameter of 130 nm. Heat-
induced esterification (at 140°C for 30 min) pro-
duced inter-molecular covalent cross-links within
and among fibers, rendering the fibrous membrane
water-insoluble. Membranes containing higher
CMCS carboxyl to PVA hydroxyl ratio retained bet-
ter fiber morphology upon extended water expo-
sure, indicating more favorable inter-molecular
cross-links. The fibrous membranes generated with
less substituted CMCS were more hydrophilic and
retained a greater extent of the desirable amine
functionality.
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Similarly, the hybrids of N-carboxyethyl chitosan
(N-CECS) and PVA could be made into nanofibers
by electrospinning [73]. The electrospinning of
CECS/PVA nanofibers was enabled by the ability of
PVA to form an elastically deformable entangle-
ment network based on hydrogen bonds. The aver-
age diameters of the bicomponent fibers were in the
range 100–420 nm. Water-resistant nanofibrous mats
were obtained by thermal crosslinking at 100°C for
10 h. Zhou et al. [74] prepared CECS/PVA nano -
fibers by electrospinning using water as solvent,
The study indicated that there was strong intermol-
ecular hydrogen bonding between the molecules of
CECS and PVA. Electrospun N-CECS/polyacry-
lamide (PAAm) blend nanofibers have also been
prepared [75].
Hexanoyl chitosan (H-CS) (Figure 2) has good
blood compatibility and is anti-thrombogenic [76,
77], so it has been used for medical applications.
Ultrafine H-CS fibers were successfully prepared
by electrospinning of H-CS solutions in chloroform
[78]. The concentration of the spinning solutions
was between 4 and 14% w/v. The as-spun fibers
appeared to be flat with ribbonlike morphology and
average diameters in the range of 0.64–3.93 µm.
The addition of an organic salt, pyridinium formate,
helped to increase the conductivity of the spinning
solution, which resulted in a general increase in the
average diameter and a general decrease in the bead
density of the resulting H-CS fibers. In addition,
bead-free H-CS/polylactide blend fibres were pre-
pared by electrospinning from solutions in chloro-
form with the H-CS solution content of less than or
equal to 50% (w/w) [79]. Galactosylated chitosan
(G-CS) (Figure 3) nanofibrous scaffold was also
fabricated by electrospinning using formic acid as
spinning solvent [80] for tissue engineering.
Ignatova et al. [81] fabricated quaternised chitosan
(Q-CS)/PVA nanofibres by electrospinning of Q-CS
solutions mixed with PVA. The average fibre diam-

eter is in the range of 60–200 nm. UV irradiation of
the composite electrospun nanofibrous mats con-
taining triethylene glycol diacrylate as crosslinking
agent resulted in stabilising of the nanofibres
against disintegration in water or water vapours.
Similarly, Q-CS/PVP nanofibres were also prepared
by electrospinning [82]. The average diameter of the
fibers significantly decreases from 2800 to 1500 nm
with increasing the polyelectrolyte content. The Q-
CS/PVP fibers can also be crosslinked by incorpo-
ration of adding photo-crosslinking additives into
spinning solutions and subsequent UV irradiation to
the electrospun fibers. Another quaternised chi-
tosan, N-[(2-hydroxy-3-trimethylammonium)propyl]
chitosan chloride (HTCSC), is a water-soluble
derivative of chitosan, which was synthesized via
the reaction between glycidyl- trimethylammonium
chloride and chitosan. Defect free HTCSC/PVA
blend mats were prepared by electrospinning of an
aqueous solution [83]. The average fibre diameter
was in the range of 200–600 nm, and decreases
with increasing HTCSC content in the blends. The
HTCSC/PVA nanofiber mats have a good antibac-
terial activity against Staphylococcus aureus and
Escherichia coli.
Poly(chitosan-g-DL-lactic acid)(P(CS-g-LA)) copoly-
mers which were produced by grafted DL-lactic
acid onto chitosan were spun into submicron and/or
nanofibers to fabricate scaffolds using an electro-
wet-spinning technique [84]. The diameter of the
fibers in different scaffolds could vary from about
100 nm to around 3 µm. The scaffolds exhibited
various pore sizes ranging from about 1 µm to less
than 30 µm and different porosities up to 80%. Sig-
nificantly improved tensile strength and modulus
for these fibrous scaffolds in their hydrated state
were observed. Amino-reserved polycaprolactone-
graft-chitosan (PCL-g-CS) (Figure 4) was synthe-
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Figure 2. The molecular structure of Hexanoyl chitosan
(H-CS)

Figure 3. The molecular structure of Galactosylated chi-
tosan (G-CS)



sized by grafting !-caprolactone oligomers onto the
hydroxyl groups of CS via ring-opening polymer-
ization by using methanesulfonic acid as solvent
and catalyst [85]. PCL-g-CS exhibited good solu-
bility in organic solvents, facilitating formation of
PCL/PCL-g-CS blend nanofibers via electrospin-
ning with the use of dimethylformamide (DMF)/
CHCl3 as solvents. Owing to the enhanced cellular
attachment results from cationic amino groups, it is
promising that these copolymers are ideal sub-
stances for developing drug carriers and tissue engi-
neering scaffolds. Similarly, L-lactide-g-Chitosan
(LLA-g-CS) which was prepared by grafting L-lac-
tide oligomers via ring-opening polymerization was
easily made into ultrafine fibers via electrospinning
due to its solubility in a broad range of organic sol-
vents [86]. 

2.5. Electrospinning of blends of chitosan and
inorganic nanoparticles

A biomimetic nanocomposite nanofibers of hydrox-
yapatite(HAp)/chitosan was prepared by combining
an in situ co-precipitation synthesis approach with
an electrospinning process [87]. A model HAp/chi-
tosan  nanocomposite with the HAp mass ratio of
30 wt% was synthesized through the co-precipita-
tion method so as to attain homogenous dispersion
of the spindle-shaped HAp nanoparticles (ca. 100#
30 nm) within the chitosan matrix. By using a small
amount (10 wt%) of ultrahigh molecular weight
poly(ethylene oxide) (UHMWPEO) as a fiber-form-
ing facilitating additive, continuous HAp/chitosan
nanofibers with a diameters of 214±25 nm were
produced and the HAp nanoparticles with some
aggregations were incorporated into the electrospun
nanofibers. The crystalline nature of HAp remains
and had survived the acetic acid-dominant solvent
system. Similarly, Shen et al. [88] prepared uniform
and ultrafine chitosan/PVA nanofibrous mats filled
with HAp nanoparticles by electrospinning of blend
solutions of HAp, chitosan and PVA. An increase in

the contents of HAp nanoparticles from 0 to
0.5 wt% caused the conductivity of the blend solu-
tion to increase from 1.06 to 2.27 mS/cm, and the
average diameter of the composite fibers to
decrease from 59±10 to 49±10 nm. The results indi-
cated that some particles had filled in the nanofibers
whereas the others had dispersed on the surface of
fibers. Similar chitosan/PVA/HAp nanofibrous bio-
composite scaffolds were fabricated by Yang et al.
[89]. The scaffolds have porous nanofibrous mor-
phology with random fibers in the range of 100–
700 nm diameters. Increase the content of HAp up
to 2% increased the ultimate tensile strength and
tensile modulus, but further increase HAp caused
the decrease of tensile strength and tensile modulus.
Another biomimetic material of HAp with electro-
spun chitosan/PVA nanofibrous scaffolds was pre-
pared by using chitosan/PVA electrospun mem-
branes as organic matrix, and HAp was formed in
supersaturated CaCl2 and KH2PO4 solution [90]. It
was found that addition of poly (acrylic acid) (PAA)
to the mineral solution and use of matrix with N-
carboxyethyl chitosan (N-CECS) promoted mineral
growth and distribution of HAp.
A fairly uniform silver nanoparticles (AgNPs)/chi-
tosan/PEO ultrafine fibers were prepared by elec-
trospinning of chitosan/PEO solutions containing
Ag/chitosan colloids by means of in situ chemical
reduction of Ag ions [91]. The AgNPs were evenly
distributed in chitosan/PEO ultrafine fibers with the
size less than 5 nm. The existence of Ag–O bond in
the composite ultrafine fibers led to the tight combi-
nation between Ag and chitosan. Penchev et al. [92]
prepared Hybrid nanofibers from chitosan or
CECS, AgNPs and PEO by electrospinning using
formic acid as solvent. AgNPs were synthesized in
situ in the spinning solution. The results showed
that AgNPs are uniformly dispersed in the nano -
fibers. The surface of the nanofibers was enriched
in chitosan and 15 wt% of the incorporated AgNPs
were on the fiber surface. Similar AgNPs/chi-
tosan/PVA nanofiber mats [93] and AgNPs/chi-
tosan/gelatin nanofibers [94] were also fabricated.
Montmorillonite (MMT) has good dispersion prop-
erties, can be widely used in macromolecular  indus-
try as an additive. Chitosan/MMT nanocomposites
have been prepared for adsorption [95] and drug
release [96] due to the unique properties of MMT.
Submicron fibers of the composites of PVA, chi-
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Figure 4. The molecular structure of amino-reserved poly-
caprolactone-graft-chitosan (PCL-g-CS)



tosan oligosaccharide (COS) and MMT were pre-
pared using electrospinning method with aqueous
solutions [97]. The PVA/COS ratio and MMT con-
centration play important roles in nanofiber mat
properties. The exfoliated MMT layers were well-
distributed within nanofibers. It was also found that
the mechanical property and thermal stability were
increased with COS and MMT contents.
Another interesting nanomaterial is multiwalled
carbon nanotubes (MWCNTs). MWCNTs grafted
by chitosan (MWCNTs-g-CS) could disperse well
in poly(vinyl alcohol) (PVA) aqueous solution with
2% (v/v) acetic acid solution. The solution contain-
ing PVA and MWCNTs-g-CS could be electrospun
to nanofibers [98]. It was found that the electrospin-
ning process did not severely alter the electron
hybridization of carbon atoms within the nanotube
framework. Moreover, these nanofibers showed a
novel sheath–core structure, the outer and inner
diameters of these sheath–core nanofibers were
about 200 and 100 nm, respectively. The electro-
spun nanofiber mats displayed faster electron trans-
fer kinetics and better electrochemical properties
than its cast film, which justified further applica-
tions in biological areas.
Other nanofibers electrospun of blends of chitosan
and inorganic nanoparticles are not discussed in
detail here, such as titanium dioxide (TiO2) nano -
particles/chitosan/PVA electrosun nanofibers exhibit-
ing antibacterial activities against Staphylococcus
aureus and Escherichia coli [99], palladium nano -
particles/chitosan grafting acrylic copolymer (PdNPs/
CS-g-AA) blend electrospun nanofibrous catalyst
applied to catalyze alpha-octene hydrogenation in
normal temperature and pressure [100], etc. The
combination of the characteristics of the inorganic
nanoparticles and the features of chitosan nano -
fibers could lead to more products with unique
properties that can fit special needs. This method
may be one of the most important directions of the
development of chitosan electrospinning tech-
niques.

3. Applications of chitosan nanofibers
3.1. Enzyme immobilization:
Electrospun nanofibers have been proven to be
excellent supports for enzyme immobilization
because they can provide large surface area-to-vol-
ume ratios, pore sizes tailored to protein molecule

dimensions, functionalized surfaces, multiple sites
for interaction or attachment, and low mass-transfer
limitation [101]. Huang et al. [30] fabricated nano -
fibrous membrane from mixed chitosan/PVA solu-
tion by electrospinning. The membrane was treated
by removing most of PVA from the nascent one
with 0.5 M NaOH aqueous solution. The stabilized
chitosan nanofibrous membrane was explored as
support for enzyme immobilization due to the char-
acteristics of excellent biocompatibility, high sur-
face/volume ratio and large porosity. Lipase from
Candida rugosa was immobilized on the nanofi-
brous membrane using glutaraldehyde (GA) as cou-
pling reagent. The lipase loading on this nanofi-
brous membrane was up to 63.6 mg/g and the
activity retention of the immobilized lipase was
49.8% under the optimum condition. The pH and
thermal stabilities of lipase were improved after it
was immobilized on the membrane. In addition, the
experimental results of reusability and storage sta-
bility indicated that the residual activities of the
immobilized lipase were 46% after 10 cycles and
56.2% after 30 days, which were obviously higher
than that of the free one.

3.2. Filtration
Nanofibers containing chitosan have the advantage
of filtering material based on the high surface/vol-
ume ratio, large porosity and functionality. They
can be potentially applicable in a wide variety of
filtration applications ranging from water purifica-
tion media to air filter media [102]. Pure chitosan
nanofiber mats fabricated by electrospinning using
trifluoroacetic acid (TFA) as solvent have been
used for absorbing metal ions [16]. The as-spun
nanofiber (~235 nm in diameter) mats which were
neutralized with potassium carbonate showed good
erosion stability in water and high adsorption affin-
ity for metal ions in an aqueous solution. The
adsorption data of Cu(II) and Pb(II) were fitted well
with Langmuir isotherm indicating that mono-layer
adsorption occurred on the nanofiber mats. The
equilibrium adsorption capacities (from Langmuir
isotherm data) for Cu(II) and Pb(II) were 485.44
and 263.15 mg/g, respectively. The Cu(II) adsorp-
tion data were ~6 and ~11 times higher than the pre-
viously reported highest values of chitosan micros-
phere (80.71 mg/g) [103] and the plain chitosan
(45.20 mg/g) [104], respectively. This high adsorp-
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tion capacity suggests that the chitosan electrospun
nanofiber mats can be applied to filter out (or neu-
tralize) toxic metal ions and microbes without los-
ing their original chitosan properties such as bio-
compatibility, hydrophilicity, bioactivity, non-anti-
genicity, and non-toxicity.
Desai et al. [105] fabricated nanofibrous filter
media by electrospinning of chitosan/PEO blend
solutions onto a spunbonded non-woven polypropy-
lene substrate. Filter media with varying fiber diam-
eter and filter basis weight were obtained. Heavy
metal binding, anti-microbial and physical filtra-
tions efficiencies of the filter media were correlated
with the surface chemistry and physical characteris-
tics of the filter media. Filtration efficiency of the
nanofiber mats was strongly related to the size of
the fibers and its surface chitosan content. Hexava-
lent chromium binding capacities up to 35 mg /g
chitosan were exhibited by the filter media along
with a 2–3 log reduction in Escherichia coli bacte-
ria cfu (clonal formation unit). The filter media
showed high efficiencies to air and water filtration,
which correlated with the fibrous media size and
shape. Similar nonwoven fiber mats with fiber diam-
eter as low as 80±35 nm for air and water filtration
were also made by electrospinning high molecular
weight chitosan/PEO (95:5) blends [106].
An affinity membrane made from electrospun hybrid
chitosan/nylon-6 nanofibers by nucleophilic reac-
tion of the chitosan’s hydroxyl and amidocyanogen
with the triazinyl chloride of Cibacron Blue F3GA
(CB) ligand was used to study the purification of
papain [107]. The equilibrium adsorption capacity
(from Langmuir isotherm data) for papain was
93.46 mg/g affinity membrane. Fifteen layers of the
composite affinity membrane were packed into a
spin column to separate papain from raw material.
Significant amount of the adsorbed papain (about
90.4%) was eluted by 1.0 M NaSCN at pH 9.0, and
4.8-fold purification was achieved in a single step.
It is shown that this system has the potential to be
developed for the industrial purification of the
papain.

3.3. Wound dressing
Zhou et al. [74] prepared biocompatible carboxyethyl
chitosan(CECS)/PVA nanofibers by electrospin-
ning of aqueous CECS/PVA solution. The potential
use of the fiber mats as scaffolding materials for

skin regeneration was evaluated in vitro using
mouse fibroblasts (L929) as reference cell lines.
Indirect cytotoxicity assessment of the fiber mats
indicated that the CECS/PVA electrospun mat was
nontoxic to the L929 cell. Cell culture results showed
that fibrous mats were good in promoting the cell
attachment and proliferation. This novel electro-
spun matrix would be used as potential wound
dressing for skin regeneration. The chitosan/ colla-
gen/PEO nanofibrous membrane fabricated by elec-
trospinning and then crosslinked by glutaraldehyde
vapor have potential as a wound dressing for skin
regeneration [62]. The membrane showed no cyto-
toxicity toward growth of 3T3 fibroblasts and had
good in vitro biocompatibility. From animal stud-
ies, the membrane was better than gauze and com-
mercial collagen sponge wound dressing in wound
healing rate.
Ignatova et al. [81] prepared quaternised chitosan
(Q-CS)/PVA nanofibres containing triethylene gly-
col diacrylate as crosslinking agent and which were
further irradiated by UV irradiation. Microbiologi-
cal screening demonstrated the antibacterial activity
of the photo-crosslinked electrospun mats against
Gram-positive bacteria Staphylococcus aureus and
Gram-negative bacteria Escherichia coli. Similarly,
Photo-crosslinked QCS/PVP electrospun mats show
high antibacterial activity against the Staphylococ-
cus aureus and Escherichia coli [82]. These obtained
nanofibrous electrospun mats are promising for
wound healing applications.
A wound dressing material composed of silver
nanoparticles (AgNPs) and chitosan has been fabri-
cated using a nanometer and self-assembly technol-
ogy [108]. It could significantly increase the rate of
wound healing. To develop a better wound dress-
ing, fairly uniform AgNPs/chitosan/PEO ultrafine
fibers were successfully prepared [91]. Evaluation of
antimicrobial activities of the electrospun AgNPs/
chitosan /PEO fibrous membrane against Escherichia
coli showed that the AgNPs in the ultrafine fibers
significantly enhanced the inactivation of bacteria.
The fibrous membrane was better than other wound
dressing containing AgNPs in wound healing rate.
Similarly, higher antibacterial activity was observed
in the electrospun non-woven mats of AgNPs/
PVA/CS blends than in those of PVA/CS blends
[93]. The as spun mats are also excellent wound
dressing.
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3.4. Tissue engineering
The development of bioinspired or biomimetic
materials is essential and has formed one of the
most important fields in today's tissue engineering
research. Hydroxyapatite (HAp) is a well known
biomimetic material. A biomimetic nanocomposite
nanofibers of HAp/chitosan was prepared by com-
bining an in situ co-precipitation synthesis approach
with an electrospinning process [87]. Biological in
vitro cell culture with human fetal osteoblast cells
for up to 15 days demonstrated that the incorpora-
tion of HAp nanoparticles into chitosan nanofibrous
scaffolds led to significant bone formation oriented
outcomes compared to that of the pure electrospun
chitosan scaffolds. The nanofibers are of potential
interest for bone tissue engineering applications.
Yang et al. [89] prepared chitosan/PVA/ HAp nano -
fibrous biocomposite scaffolds by electrospinning.
The attachment and growth of mouse fibroblast on
the Surface of the nanofibrous structure indicated
that a combination of nanofibrous CS/PVA and
HAp that mimics the nanoscale features of the
extracellular matrix could be promising for applica-
tion as scaffolds for tissue regeneration, especially
in low or non load bearing areas. Another bio-
mimetic chitosan/PVA/HAp nanofibrous scaffold
prepared by using chitosan/PVA electrospun mem-
branes as organic matrix and HAp being formed in
supersaturated CaCl2 and KH2PO4 solution is also
of potential application in the field of biomedicine
[90].
Based on a biomimetic approach, Mohammadi et
al. [49] developed 3D nanofibrous hybrid scaffolds
consisting of PCL, PVA and chitosan (PCL/PVA/
CS scaffolds) via a multi-jet electrospinning method.
Osteogenically induced cultures revealed that cells
were well-attached, penetrated into the framework
and were uniformly distributed. Besides, PCL nano -
fibers containing various amounts of chitosan (0, 3,
9, and 23%) were also prepared and evaluated for
their osteogenic differentiation of preosteoblasts in
2D and 3D cultures [47]. The results revealed that
incorporation of chitosan in PCL nanofibers not
only improved the adhesion and proliferation of
MC 3T3-E1 cells but also elevated calcium deposi-
tion, alkaline phosphatase activity, and the expres-
sion of osteopontin compared to PCL alone nano -
fibers. The nanofibers are superior to PCL nanofibers
in promoting bone tissue formation. The chitosan/

PLA micro/nanofibers prepared by electrospin -
ning.are also expected to be used in the native extra-
cellular matrix for tissue engineering [51].
Bridging of nerve gaps after injury is a major prob-
lem in peripheral nerve regeneration. Electrospun
PCL/chitosan nanofibrous scaffolds were evaluated
in vitro using rat Schwann cells (RT4-D6P2T) for
nerve tissue engineering [109]. The Young's modu-
lus and strain at break of the electrospun PCL/chi-
tosan nanofibers were better than those of the
chitosan nanofibers. PCL/chitosan scaffolds showed
better cell proliferation than PCL scaffolds (48%
more cell proliferation after 8 days of culture) and
maintained their characteristic cell morphology,
with spreading bipolar elongations to the nanofi-
brous substrates. This electrospun nanofibrous matrix
was proved of specific interest in tissue engineering
for peripheral nerve regeneration.
Electrospun chitosan nano/microfibrous tubes with
a degree of deacetylation (DD) of 93% were exam-
ined the effects of their mechanical strength and
permeability on nerve regeneration [110]. The study
indicated that the chitosan nano/microfiber mesh
tubes with a DD of 93% have sufficient mechanical
properties to preserve tube space, provide a better
scaffold for cell migration and attachment, and
facilitate humoral permeation to enhance nerve
regeneration. Afterwards, Wang et al. [111] con-
structed a chitosan nonwoven nano fiber mesh tube
consisting of oriented fibers by the electrospinning
method. The efficacy of oriented nanofibers on
Schwann cell alignment and positive effect of this
tube on peripheral nerve regeneration were con-
firmed. As a result of fiber orientation, the tensile
strength along the axis of the sheet increased.
Because Schwann cells aligned along the nanofibers,
oriented fibrous sheets could exhibit a Schwann cell
column. Functional recovery and electrophysiologi-
cal recovery occurred in the oriented nanofibers and
approximately matched those in the isograft. The
oriented chitosan nanofiber mesh tube may be a
promising substitute for autogenous nerve graft.
Liver tissue engineering requires a perfect extracel-
lular matrix for primary hepatocytes culture to
maintain high level of liver specific functions and
desirable mechanical stability. Galactosylated chi-
tosan (G-CS) nanofibrous scaffold was fabricated
by electrospinning using formic acid as spinning
solvent [80]. The G-CS nanofibrous scaffolds dis-
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played slow degradation and suitable mechanical
properties as an extracellular matrix for hepato-
cytes. Hepatocytes cultured on G-CS nanofibrous
scaffold formed stably immobilized 3D flat aggre-
gates and exhibited superior cell bioactivity with
higher levels of liver-specific function maintenance
in terms of albumin secretion, urea synthesis and
cytochrome P-450 enzyme than 3D spheroid aggre-
gates formed on G-CS films. Such G-CS-based
nanofibrous scaffolds could be useful for various
applications such as bioartificial liver-assist devices
and tissue engineering for liver regeneration as pri-
mary hepatocytes culture substrates.
Ultra-fine fiber mats of hexanoyl chitosan (H-CS)
for potential use as skin tissue scaffolds was fabri-
cated [112]. The results showed that the fiber mats
were non-toxic and did not release substances harm-
ful to mouse fibroblasts (L929). The fibrous scaf-
folds could support the attachment and the prolifer-
ation of both human keratinocytes (HaCaT) and
human foreskin fibroblasts (HFF), especially for
HaCaT. In addition, the cells cultured on the fibrous
scaffolds exhibited normal cell shapes and inte-
grated well with surrounding fibers. The obtained
results confirmed the potential for use of the fiber
mats as scaffolds for skin tissue engineering.
Duan et al. [113, 114] prepared nanofibrous com-
posite membranes of poly(lactide-co-glycolide)
(PLGA)/chitosan/PVA by electrospinning. In their
studies, PLGA and chitosan/PVA were simultane-
ously electrospun from two different syringes and
mixed on the rotating drum. Then membrane was
crosslinked by glutaraldehyde vapor. Cell culture
indicated that the cells could not only favorably
attach and grow well on the composite membranes,
but were also able to migrate and infiltrate the
membranes. Therefore, the results suggest that the
composite membranes can positively mimic the
structure of natural extracellular matrices and have
the potential for application as three-dimensional
tissue engineering scaffolds.

3.5. Drug delivery
Electrospun nanofibers are better drug delivery sys-
tems than the bulk materials due to the high specific
surface area and short diffusion passage length. The
drug release rate can be finely controlled by modu-
lation of nanofiber morphology, porosity and com-
position. The blends of poly(ethylene glycol)-g-chi-

tosan (PEG-g-CS) and ibuprofen-loaded poly(lactide-
co-glycolide) (PLGA) were made into fiber mats by
electrospinning [115]. It was found that the glass
transition temperature of PLGA decreased with
increasing PEG-g-CS content in the composite
membranes, which results in decrease in tensile
stress at break but increase in tensile strain of the
membranes. The degree of shrinkage of these com-
posite membranes decreased from 76 to only 3%
when the PEG-g-CS content in the membranes
increased from 10 to 30%. The presence of PEG-g-
CS significantly moderated the burst release rate of
ibuprofen from the electrospun PLGA membranes.
Moreover, ibuprofen could be conjugated to the
side chains of PEG-g-CS to prolong its release for
more than two weeks. The sustained release capac-
ity of the PLGA/PEG-g-CS composite membranes,
together with their compliant and stable mechanical
properties, renders them ideal matrices for atrial
fibrillation.
Nanofibrous materials containing the antitumor
drug doxorubicin hydrochloride (DOX) were pre-
pared using a one-step method by electrospinning
of DOX/quaternized chitosan (Q-CS)/poly(l-lac-
tide-co-d,l-lactide)(coPLA) solutions [116]. The
release rate of DOX from the prepared fibers
increased with the increase in DOX content. The
DOX release process was diffusion-controlled. The
studies revealed that incorporation of DOX and Q-
CS in the nanofibrous mats led to a significant
reduction in the HeLa cells viability. It was found
that the antitumor efficacy of the DOX-containing
mats at 6 h was higher than that of the free DOX.
Chitosan/hydroxybenzotriazole(HOBt)/PVA blend
nanofibers may be suitable for drug delivery or tis-
sue engineering applications too [117].
For effective cancer gene therapy, systemic admin-
istration of tumor-targeting adenoviral (Ad) com-
plexes is critical for delivery to both primary and
metastatic lesions. Electrospinning was used to
generate nanocomplexes of Ad/chitosan/poly(ethyl-
ene glycol) (PEG)/folic acid (FA) for effective FA
receptor-expressing tumor-specific transduction
[118]. The transduction efficiency of Ad/chitosan–
PEG–FA was increased as a function of FA ratio in
FA receptor-expressing KB cells, but not in FA
receptor-negative U343 cells, demonstrating FA
receptor-targeted viral transduction. In addition, the
transduction efficiency of Ad/chitosan/PEG/FA was
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57.2% higher than chitosan-encapsulated Ad, show-
ing the superiority of FA receptor-mediated endocy-
tosis for viral transduction. The production of
inflammatory cytokine, IL-6 from macrophages
was significantly reduced by Ad/chitosan/PEG/FA
nanocomplexes, implying the potential for use in
systemic administration. These results clearly demon-
strate that cancer cell-targeted viral transduction by
Ad/chitosan/PEG/FA nanocomplexes can be used
effectively for metastatic tumor treatment with
reduced immune reaction against Ad.

3.6. Catalysis
A nanofibrous catalyst was fibricated by electro-
spinning of Chitosan grafting acrylic acid copoly-
mer (CS-g-AA) supporting nano palladium [100].
The diameter of nanofiber was about 70–200 nm,
the size of metal particles were in a range of 10–
40 nm, and palladium particles dispersed on nano -
fibers homogeneously. The catalyst was applied to
catalyze alpha-octene hydrogenation in normal
temperature and pressure. The results showed that
the conversion of alpha-octene was 99 percent , and
the yield of octane was 65 percent by double-metal
catalyst. This indicated the excellent catalysis effi-
ciency of the nanofibrous catalyst. Another nanofi-
brous catalyst was also prepared by Shan et al.
[119]. Chitosan nanofibers were used to modify
indium tin oxide (ITO) electrode by electrospin-
ning. Then, Prussian blue (PB) nanoparticles were
electrodeposited on the nanofibers by potentiostatic
technique in an acidic solution containing single
ferricyanide. The modified electrode exhibited
electrocatalytic activity towards reduction of H2O2.

4. Conclusions and perspectives
Chitosan is soluble in most of acid solutions. The
protonation of the amino groups on the chitosan
backbone inhibits the spinnability of pure chitosan.
There are several ways to overcome the defect
restricting the formation of continuous fibers. One
is to use a special solvent (such as concentrated
acetic acid solution) to reduce the surface tension of
chitosan solution and increase the electrostatic
charge density of the jet. The second is to change
the amino groups of chitosan into salts directly in
the solvent (e.g. TFA as solvent) to decrease the

free amino groups of chitosan. The third is to mix
chitosan with other substances (such as synthetic
polymers, proteins, etc.), so that the free amino
groups of chitosan are reduced by the intermolecu-
lar interactions between chitosan and the additives
through some form, such as hydrogen bonds. The
fourth is to change chitosan into its derivatives. The
solubilities of chitosan derivatives have been
greatly improved, thus the spinnabilities are also
greatly improved. The nanofibers containing chi-
tosan have potential use in the areas of enzyme
immobilization, filtration, wound dressing, tissue
engineering, drug delivery and catalysis not only
because chitosan is a non-toxic, antibacterial, bio -
degradable and biocompatible biopolymer, but also
because the nanofibers have large surface areas and
high porosity (Table 1).
During the past few years, enormous progress has
been made in the area of electrospinning to produce
various nanofibres containing chitosan with unique
shape and unique properties. However, there are
many problems that need to be solved for large-
scale manufacturing of chitosan based new nano-
fibers, such as: how to fabricate uniform nanofibers
with same morphologies, mechanical and chemical
properties repeatedly and massively. How to improve
the mechanical properties of chitosan nanofibers
and how to avoid the toxicity arised from the toxic
spinning solvents which will limit the applications
of as-spun nanofibrous products, etc. Designing
mixtures containing chitosan and other substances as
electrospinning materials, adjusting various param-
eters of the spinning process to control the fiber
diameter, orientation and morphology of the elec-
trospun nanofibers, searching for ‘green solvents’
without toxicity as electrospinning solvents and fur-
ther modifying the as spun nanofiber products to
improve the characteristics will perhaps be focused
by researchers. With the applications of new elec-
trospinning technologies (such as in-situ mixing
electrospinning, two-phase electrospinning, wind
assisted electrospinning and coaxial electrospin-
ning, etc.), abundant novel nanofibrous pruducts
based on chitosan would be designed and the appli-
cations of the products which are still at the labora-
tory level will became true in near future by the
efforts of researchers.
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Table 1. Chitosan based nanofibers and their applications

Abbrevitions: THF, tetrahydrofuran, aq AA, aqueous acetic acid solution; DMSO: dimethyl sulfoxide. Other abbrevitions are in the text.

Polymer Solvent DD Average fiber diameter
(nanoparticle size) [nm] Application Reference

Chitosan aq AA 54 130 – [17]
Chitosan aq AA 75–85 70±45 – [18]
Chitosan TFA/DCM 95 130±10 – [15]
Chitosan TFA/DCM 85 126±20 tissue engineering [14]
Chitosan
(neutralized with K2CO3 solution) TFA 86.7 235 filtration [16]

Chitosan/PVA
(removing PVA with 0.5 M NaOH) aq AA 90 80~150 enzyme immobilization [30]

Chitosan/PVA aq AA 90 99±21 wound dressings [33]
Chitosan/PEO aq AA 80 10–240 – [39, 40]
Chitosan/PEO aq AA 67-83 80±35 filtration [105, 106]
Chitosan/ UHMWPEO(5%)
Chitosan/ UHMWPEO(10%)
Chitosan/ UHMWPEO(20%)

aq AA/DMSO >85
114±19
138±15
102±14

– [43]

Chitosan/PET TFA 85 500–800 wound dressings [45]
Chitosan/PCL HFIP 75–85 450±110 bone tissue engineering [47]
Chitosan/PCL HFIP/TFA/DCM – 190±26 nerve tissue engineering [109]
Chitosan/nylon-6 HFIP/FA 85 80–310 filtration [54, 107]
Chitosan/PVA-PCL
(by multi-jet electrospinning method) aq AA/CHCl3 85 100–200 bone tissue engineering [49]

Chitosan/PVA-PLGA
(by multi-jet electrospinning method)

aq AA 
THF/DMF 90 275±175 tissue engineering [113, 114]

Chitosan/collagen
(crosslinked by GA vapor) HFIP/TFA 85 434–691 tissue engineering [61]

Chitosan/collagen/PEO
(crosslinked by GA vapor) aq AA 95 398±76 wound dressings [62]

Chitosan/SF FA 86 180–790 – [67]
O-CMCS/PVA water 84.7 130 – [72]
N-CECS/PVA water 82.5 131–456 wound dressings [74]
H-CS CHCl3 88 640–3930 skin tissue engineering [78, 112]
G-CS FA 85 160 liver tissue engineering [80]
Q-CS/PVA
(crosslinked by UV irradiation) aq AA 80 60–200 wound dressings [81]

Q-CS/PVP
(crosslinked by UV irradiation) water 80 2400±640 wound dressings [82]

Q-CS)/coPLA DMF/DMSO 80 470 drug delivery [116]
PCL-g-CS/PCL DMF/CHCl3 91 – tissue engineering [85]
PEG-g-CS/ PLGA DMF 85 – drug delivery [115]
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