
1. Introduction
The viscoelastic properties of the polymers have
been widely studied [1]. Recently its modelling
also came to the front [2]. Stress oscillation occur-
ring during the tensile testing of poly(ethylene
terephthalate) (PET) – also denoted as self-oscilla-
tion – was described first in 1970, in conjunction
with necking induced by the static loading of amor-
phous PET [3]. Stress oscillation means that under
certain conditions the stress arising during necking
is not constant anymore, but exhibits a periodic
fluctuation vs. time [4]. The reasons of stress oscil-
lation have not been clarified in the literature and
are hotly debated [5]. Among possible explanations
one can find local heating caused by orientational
elongation [6–10]; oscillation of local deformation
rate during necking within a critical stress range
[11]; orientation crystallization induced by adia-
batic heat formation [12].

Karger-Kocsis et al. [13, 14] studied the oscillation
phenomenon in sPP. In their opinion necking,
which is a prerequisite of stress oscillation in any
polymer, produces an elongated, random network.
This network closely resembles partially crystalline
thermoplastic elastomers. The deformation of this
complex system is strongly inhomogeneous. This,
by itself, induces a shear deformation process.
According to their explanation, when some small
crystallites disintegrate during the tensile elonga-
tion the shear deformation is amplified further and
cavities are formed at the crossing of shear bands.
If the density of micro-waves of crossings reaches a
critical value the material is weakened and its load-
bearing capacity drops because of the abrupt cavi-
tation. This explains the stress drop in the ampli-
tude of stress oscillation. According to this expla-
nation shear bands cannot easily cross each other
on the sample surface, which is in agreement with

63

*Corresponding author, e-mail: ronkay@pt.bme.hu
© BME-PT and GTE

Modelling tensile force oscillation during the tensile test of
PET specimens

L. M. Vas, F. Ronkay*, T. Czigány

Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and
Economics, Mûegyetem rkp. 3. Budapest H-1111, Hungary

Received 30 October 2008; accepted in revised form 13 December 2008

Abstract. Force oscillation occurring during the tensile testing of poly(ethylene terephthalate) (PET), resulting in periodi-
cal cavitation of the test specimens, has been studied. A mathematical model has been developed to describe the phenome-
non, wherein special fibre bundles are assigned to the amorphous molecular chains. In order to model the local periodical
transformations and the rate dependent viscoelastic behaviour the coupled fibre bundle cells were supplemented with a two-
element Maxwell model. Using the parameters determined from the measurements the model was compared to the meas-
ured force-elongation diagrams and it has been concluded that the simple model can be well used to describe the
phenomenon.

Keywords: modelling and simulation, stress oscillation, viscoelastic properties

eXPRESS Polymer Letters Vol.3, No.2 (2009) 63–69
Available online at www.expresspolymlett.com
DOI: 10.3144/expresspolymlett.2009.10



the experimental observation that cavities always
appear inside the test specimen. 
According to Ebener et al. [15] oscillation arises if
the test specimen can store enough elastic energy.
For this the initial length of the test specimen
should be large enough. Elastic energy storage-
capacity can also be achieved by the application of
an external spring. According to his measurements,
if the deformation rate is increased during the oscil-
lation, the mean stress and the amplitude decrease,
while local heat removal results in the increase of
the mean stress. In his opinion during the deforma-
tion – a high degree of orientation occurs and heat
is released – the polymer may crystallize partially
in both the transparent and non-transparent parts.
As the local deformation rate is higher during the
formation of the non-transparent bands, crystalliza-
tion is easier here. Not all non-transparent bands
were found, however, to be partially crystalline. 
In our earlier study [16] we traced back the origin
of the oscillation to the cavitation of the test speci-
men. We observed that the cavitation occurs simul-
taneously with the stress oscillation, in a periodic
manner, before reaching the stress peaks. Due to
the formation of the cavities the heat conductivity
of the material decreases considerably, the temper-
ature of the deformation zone increases abruptly
(with 36–40°C), resulting in a drop of the strength
and in elongation. During neck propagation, how-
ever, the material cools down, the strength
increases again, so the process becomes periodical.
Our conclusions were corroborated by SEM (scan-
ning electron microscopy) and AE (acoustic emis-
sion) measurements. In order to describe the
phenomenon a physical model was constructed,
which traces back the phenomenon to changes of
the molecular structure. According to this model
shear forces arise between the molecular chains ori-
enting under the effect of stress and, as a result, the
material splits into molecular bundles. Ordering of
the molecules into bundles is accompanied by sig-
nificant crystallization. Micro-cracks (crazes)
between the bundles decrease the heat conductivity
of the material considerably and this leads to local
heating. 
In this article the changes in the orientation of the
molecular chains are modelled by fibre bundles.
Fibres of a bundle consisting of partially ordered,
homogeneous (uniform) fibres can be classified

according to their initial state and according to the
properties of their environment. Fibres belonging to
the same class form a partial bundle, a so-called
fibre bundle cell. In this article a pre-stressed,
breaking fibre bundle (so-called EH bundle) is used
[17, 18], with independent fibres, the strings
defined by the clamping points are well ordered,
but the individual fibres may be either pre-stressed
with a statistically variable ε0 elongation (ε0 > 0),
or may be loose, i.e. crimped (–1 < ε0 < 0). In order
to describe the viscoelastic behaviour of the test
specimen a two-element Maxwell model is used
[19].
The main goal of this study is to develop a simple
mathematical model to describe the force-elonga-
tion curve. Aim was to model two phenomena
known and explained: 1. Oscillation occurs just
over a strain rate; 2. Oscillation is connected with
forming crazes where amorphous molecular chains
like fibres get stressed/strained and create bundles
of chains and voids among them.

2. Experimental results

2.1. Material and equipment

In our experiments standard ‘dumb-bell’ specimens
were injection molded from PET (SkyPET-BL
8050, SK Chemicals) pellets using an Arburg All-
rounder 270C injection moulding machine. Zone
temperatures of the injection moulding machine
were: 235/240/245/250/255°C, injection pressure
was 500 bar. The mould was cooled by 15°C water.
Tensile testing of the specimens was performed by
a Zwick Z020 universal tensile tester at room tem-
perature. Cavities and crazing appearing in the
material were studied by a JEOL JSM 6380LA
electron microscope.

2.2. Measurements

Tensile tests were performed at a tensile rate of
60 mm/min, the initial gauge length of the test
specimens was 115 mm. Tensile curve shown in
Figure 1 was obtained during the test. As shown by
the figure, after a uniform neck propagation an
oscillation of about constant amplitude (5.8 MPa)
and cycle time (1.14 s) appears in the stress. The
lower limiting value of the oscillation is 21.2 MPa,
its upper limiting value is 27 MPa. The slope of the
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tangent at the initial portion of the curve is
4.5 MPa/s, in the initial portions of the oscillating
period it is, however, 6 MPa/s.
Figure 2 shows the longitudinal section of a speci-
men which has undergone oscillation. One can see
that the cavitation occurs periodically. Between the
cavities parallel with the load molecular bundles
can be observed with a thickness between 10 and
150 μm. The bands perpendicular to the tensile
elongation without cavities are formed during the
increasing stress interval of the stress oscillation
period, while the bands containing cavities are
formed during the stress drop interval.

3. Modelling the force oscillation and
discussion

Based on the tensile tests of PET specimens the
force oscillation appears only after the initiation of
necking, above a certain tensile rate, indicating a
load peak, therefore it can be characterized by a
critical stress (σcrit). When neglecting the initial
load peak the force-elongation curve increases
monotonously. Two forms of this is shown in Fig-

ure 3. In one case the asymptotic stress (σ1) is less
than σc = σcrit therefore oscillation does not take
place. In the other case this stress (σ2) is exceed
σcrit hence reaching σcrit the oscillation starts.
Based on these an analogous mechanical model
was developed in order to describe mathematically
the characteristics and the force oscillation shown
in Figure 1 and to study the phenomenon analyti-
cally.

3.1. Mechanical model

As shown by the experiments crazing and void for-
mation occurs periodically. It means that the
molecular chains in the amorphous phase assemble
into micro-bundles in front of the deformation
zones forming voids, some of which may develop
into macro-cavities. Amorphous chains can be con-
sidered as part of an EH type fibre bundle [17, 18]
consisting of crimped fibres which are perfectly
flexible and do not transmit tensile force while
being crimped (Figure 4).
It is assumed that the EH bundle cell is enclosed
into a rigid box which remains intact until exposed
to a critical force level. Then the box opens and
extends telescopically, but a force is transmitted
only when the fibres are straightened (see Fig-
ure 4). For the sake of simplicity let us consider the
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Figure 1. Tensile curve of PET at a tensile rate of
60 mm/s

Figure 2. SEM micrograph of the longitudinal section of
the specimen

Figure 3. Force responses to be modelled

Figure 4. Fiber bundle cell and its symbols in intact and
opened states



fibres as inextensible, the boxes as rigid and the
level of crimping uniform. In this case the deforma-
tion of the intact cell is zero, while that of the
opened cell is described in Equation (1):

(1)

where L0 is the gauge length of the test specimen,

Lc and Lp are the lengths of the intact and open cells
respectively, ε f0 < 0 is the crimping of the fibres
(see Figure 5). Note that Lp is a kind of period
length measurable on the neck.
In order to model the periodical local transitions
and the viscoelastic rate-dependent behaviour of
the specimen a stiff box containing a number of
serially connected fibre bundle cells and a two-ele-
ment Maxwell model [19] are used, respectively
(see Figure 6).

3.2. Force oscillation response

Modelling the tensile test the constant rate elonga-
tion of the model shown in Figure 6 is described
with Equation (2):

(2)

where u is the relative extension of the specimen
measured between the grips and ε.. 0 is the strain rate.
The response of the model changes in time inter-
vals because the fibre cells open one after another

periodically causing jump-like drops in the force.
The strain rate is equal to u., the rate of extension of
the specimen measured between the grips, as
described in Equation (3):

(3)

where v and L0 are the speed of the moving grip and
the gauge length of the specimen, respectively.
In the first time interval up to the first load peak
(0 ≤ t ≤ t1) every cell is closed, hence only the
spring (E = E0) and the dashpot (η = η0) of the
Maxwell model deform (Figure 6: ε2 = 0, ε = ε1),
which can be described by Equation (4):

(4)

The general solution of Equation (4) for a stimulus
according to Equation (2) can be derived easily in
Equation (5):

(5)

which tends to a constant stress value (σLim), where
τ0 is a time constant, which is described by Equa-
tion (6):

(6)

Supposing that σ(0) = 0, the stress-strain relation-
ship for the first interval (0 ≤ t ≤ t1) is given by
Equation (7):

(7)

The initial slope in this interval depends on the
strain rate and is described by Equation (8):

(8)

Consequently, increasing the strain rate increases
both the initial slope (σ.

0) and the asymptotic stress
value (σLim), therefore, if the strain rate is large
enough the stress reaches the critical stress in a
finite time (0 < t1 < ∞) (Equation (9)):
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Figure 5. Specimen with neck periods

Figure 6. Analogous mechanical model



Reaching the critical stress at time point t1 the first
fibre cell opens and the strain of the spring
decreases suddenly by εc, up to the entire straight-
ening of the fibres (εe(t1) > ε c), and the stress drops
to σ0 (Figure 7). In the real PET material a neck
forms at the first force peak, where the extension is
cumulated, the strain becomes essentially localized,
hence the strain rate increases: ε.1 > ε.0. Hence, if the
length of the neck formed at t1 is l1, and assuming
that the local extension (Δl) in the (t1, t1+Δt) inter-
val is equal to that of the specimen or the entire
model (ΔL1), i.e. if the extension of the propagating
neck outside of the given section is negligible,
which is described in Equation (10):

(10)

where L1 = L(t1). Accordingly the local strain and
strain rate are (see Figure 6) described in Equa-
tions (11) and (12):

(11)

(12)

As another consequence a kind of hardening takes
place because of the increase in the orientation.
Therefore, in an analogous way, the model parame-
ters are supposed to change as well: E = E1 and
η = η1.
On the basis of the considerations above Equa-
tion (13) is valid for the second time interval
(t1 < t ≤ t2):

(13)

The general solution of Equation (13) is in Equa-
tion (14), which is similar to that of Equation (5):

(14)

where τ1 is a new time constant (Equation (15)): 

(15)

Here σ(t1+0) = σ0, hence the stress-strain relation-
ship and the initial slope for the second interval
(t1 < t ≤ t2) are given by Figure 7 and it is described
in Equations (16) and (17):

(16)

(17)

It can be assumed that the phenomena in the next
and further intervals are similar to those in the sec-
ond interval, consequently the force process is peri-
odical.

3.3. Method of determining the model
parameters

Pre-set data of the tensile test are L0 and v. From
measurements performed on the PET specimens
the following data can be determined directly: σcrit,
σ0, σ. 0, σ. 1, ε..0, ε..1, l0, t1, …, tn, and Tp (see Table 1).
Model parameters, such as E0, E1, η0, η1, εc and ε f0

can be calculated from Equation (1–17).
If σ0 is known E0 can be determined from Equa-
tion (8) and solving the Equation (18) τ0 can be
obtained:

(18)

and from Equation (6) η0 can be calculated.
Equation (19) is given by Equation (16) for the
(i+1)-th time interval at ti+1:
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Figure 7. Model response



(19)

Equation (20) is given by expressing E1 form Equa-
tion (17) and substituting into Equation (16) and
taking into consideration that Tp = ti+1–ti:

(20)

Solving Equation (20) τ1 is obtained, then from
Equation (15) and (17) η1 and E1 can be calculated
respectively. Finally, the negative strain (εc) stored
as crimping or loosening in the fiber cells can be
calculated in the Equation (21):

(21)

The length of the Lp period can be measured on the
neck, therefore the length of the intact cell (Lc) and
the fibre crimping (εf0), as a negative strain can be
determined from Equations (22) and (23):

(22)

(23)

As a cross-check it is worth to calculate the cycle
time from Equation (20) and to compare it with the
measured value in Equation (24):

(24)

Substituting the model parameters calculated from
the measured data (Table 2) into the equations
above the oscillation curve predicted by the model
is obtained.

Figure 8 compares the measured tensile curve with
the points predicted by the model. As the model
describes only the established oscillation, a better
picture is obtained if the curve starts not in the true
t = 0 origin, but only immediately before the onset
of the oscillation. As shown by Figure 8 the ampli-
tude and frequency of the model curve are exactly
identical with the corresponding values of the
observed stress oscillation. The shape disagreement
between the two curves is due to the fact that in the
fibre bundle cells in the simplified model contain
only idealized, inextensible fibres of uniform
crimping, not real fibre bundles containing fibres of
variable crimping, which would round off the sharp
peaks of the curves.

4. Conclusions

Stress oscillation occurring during the tensile test
of PET has been studied and modelled. A mathe-
matical model was created to describe the oscilla-
tion. The amorphous molecular chains were
described as apart of modelling by special EH-type
fibre bundles containing crimped fibres enclosed
into rigid boxes. These boxes open up at a certain
critical force value, when the crimped fibres
straighten and begin to bear the load. In order to
model the periodic local transformation and the
rate-dependent viscoelastic behaviours of the test
specimens the connected fibre bundle cells were
supplemented by a two-element Maxwell model.
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Table 2. Parameters obtained by model fitting

E0 E1 η0 η1 εc εf0 τ0 τ1

[MPa] [MPa] [MPas] [MPas] [–] [–] [s] [s]
483.0 523.8 4174.5 853.7 0.01 –0.98 8.64 1.63

Table 1. Test results

v L0 σcrit σ0 σ. 0 σ. 1 σlim

[mm/min] [mm] [MPa] [MPa] [MPa/s] [MPa/s] [MPa]
60 115 27 21.1 4.5 7.2 36.3

ε. 0 ε. 1 l1 Lc Lp t1 Tp

[1/s] [1/s] [mm] [mm] [mm] [s] [s]
0.01 0.04 26 0.02 1.32 9.24 1.14

Figure 8. Comparison of the measured values and the
model



Using the parameters determined from the meas-
urements the model was compared to the real ten-
sile curve and concluded that simple model can be
well used to describe the phenomenon.
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